Transits and Photometry

The Faint Limit

- Includes detection and characterization
- Includes transits and eclipses
- Includes phase curves and non-transiting planets (e.g., upsAnd)
- Includes broadband photometry, spectroscopy, polarimetry
- Planetary community does NOT call this large category "transits"
- Need to stop calling it "transits"

Combined-Light Measurement The Faint Limit

Joseph Harrington University of Central Florida

Progress in Faint Limit

- Spitzer and HST have done wonderfully on a few very bright planets, BUT:
- "Imagine how little we would know about the universe if we only had one to study."
- Need to study as diverse a group of planets as possible
- Can't do most with spectroscopy today
- Can do many with broadband secondary-eclipse photometry

Secondary Eclipses

If a planet transits, it usually also goes behind its star

Secondary Eclipses

Assume blackbody (Planck) emission:

$$I(\lambda) = \frac{2hc}{\lambda^3} \frac{1}{(\exp(hc/\lambda kT) - 1)}$$

Contrast ratio, emitted light:

$$C_{\mathrm{p},\star}(\lambda) = rac{r_{\mathrm{p}}^2 I_{\mathrm{p}}}{r_{\star}^2 I_{\star}} = \left(rac{r_{\mathrm{p}}}{r_{\star}}
ight)^2 rac{\exp(hc/\lambda k T_{\star}) - 1}{\exp(hc/\lambda k T_{\mathrm{p}}) - 1}$$

Equillibrium temperature:

$$egin{array}{lll} E_{
m out} &=& E_{
m in} \ L_{
m p} &=& L_{\star} \left(rac{\pi r_{
m p}^2}{4\pi a^2}
ight) (1-A) \ L &=& 4\pi r^2 \sigma T^4 \ T_{
m p,eq} &=& \left(rac{1-A}{4}
ight)^{1/4} (rac{r_{\star}}{a})^{1/2} \, T_{\star} \end{array}$$

Secondary Eclipses!

First Successes

HD 189733b 16-µm Data

HD 189733b is round!

- Derivative of lightcurve shows planet crossing limb
- Detect that planet is round
- With better telescope, map day-side emission w/ stellar limb

eming et al. (2006, ApJ 644, 560)

 $\phi Q/|Q$

HD 149026b

Eclipse!

HD 149026b Results

- $F_{\rm p}/F_{\rm *} = 0.00084 -0.00012 +0.0009$
- $T_{\rm b} = 2300 \text{ K} \pm 200 \text{ K}$
- $T_{\rm eq} = 1741 \; {\rm K}$
- Kicked off theory debate about TiO/VO (Fortney et al., etc.)
- Predict above a given temp that T_b should jump
- Produce atmospheric inversion
- Poor day-night energy transport

Spitzer ToO Program

- Goal: As many T_b as possible, best R
- Plentiful resources, limited cryo and human time
- Planning a good AOR is nontrivial we know how
- Better to cooperate than compete
 - We work, in confidence, with all planet hunters
 - Involve discoverers in analyses of their planets
 - Work w/ discoverers on followup projects

HAT-P-1b

HAT-P-1b

TrES-2

TrES-2

GJ436b 24 um

WASP-1b and -2b

Technical Lessons

- We are looking at dim next to bright
- The systematics are everything
- This is unlike most prior spacecraft science
- Can't assume you can fix systematics after the fact
- Calibrate! Either on the ground or fly it
- Stability over weeks/months valuable
- Things moving fast: far-out mission plans may be obsolete before flown!
- Take small steps quickly, or risk flying limiting instrument on flagship mission

Characterization Mission

- Goal: Spectral phase curves to measure molecules
- Include transits, eclipses, best non-transiting
- Super-Earths on M-dwarfs
- Warm/Hot Jupiters on solar-type stars
- Spitzer-like design (panel is sunshield)
- 1-2 meter telescope
- No cryogen
- Orbit allows long stares, thermal stability
- Super-stable pointing

One Instrument

- High-throughput, medium-res, single-setting spectrograph
- 0.7-few μm, get H₂O, CO, CO₂, CH₄, H₃⁺, NH₃, etc.
- Possible externally dispersed aperture for high res
- Broadband filter apertures chosen for molecules
- Integrating sphere puts calibration into each frame
- No internal reflections
- Rock-stable over weeks/months

Benefits

- 3-10 planets: high-level spectroscopy around orbit
- 50-200 planets: broadband secondary eclipses
- 3-10 planets: repeated eclipses/transits
 - Variability: chemical weather
 - Transit timing search for perturbers
 - Limb-crossing dayside maps!
- Long, continuous views, 100s of hours
- No new technology, fly it now
- Cheap, probe-scale mission